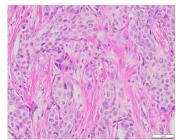
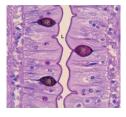


HISTOLOGY Dr.Ahmad Al-Qawasmi

2025 Study smarter, not harder!

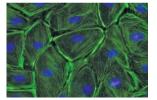


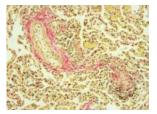
Introduction to Histology


- *Histology:* The study of the tissues of the body and how these tissues are arranged to constitute organs
 - **Tissue:** A group cells surrounded and impeded in ECM
 - *ECM (Extracellular matrix):* solution <u>between the cells</u>, containing water, glycoproteins, electrolytes
- For a tissue to be studied, it must undergo "Tissue Processing", which include:
 - Fixation: Small pieces of tissue are placed in solutions of chemicals that cross-link proteins and inactivate degradative enzymes, which preserves cell and tissue structure
 - ✓ Most popular fixative is *formalin*
 - Dehydration: The tissue is transferred through a series of increasingly concentrated alcohol solutions, ending in 100%, which removes all water
 - > Clearing: alcohol is removed in an organic solvent in which both alcohol and paraffin are miscible
 - > Infiltration: the tissue is placed in *melted paraffin* until it becomes completely infiltrated with it
 - **Embedding:** the tissue is placed in a *small mold* with *melted paraffin* and allowed to *harden*
 - > *Trimming:* the paraffin block is trimmed to expose the tissue for *sectioning* (slicing) on a <u>microtome</u>
 - ✓ The perfect thickness of the section is 7-10 μ m
 - **Staining:** adding a stain (pigment) to *enhance the contrast* of the image
 - ✓ Most cells and extracellular material are completely colorless
- Stains are classified into general and special stains
- General Stains: Include dyes forming electrostatic interactions with ionizable molecules of the tissues
 - **Basic dyes:** include Hematoxylin, toluidine blue, alcian blue, and methylene blue
 - Stain *negatively charged structures* (*anionic*, *acidic*, *basophilic*) such as nucleic acids (DNA, RNA) & GAGs (glycosaminoglycans) with a blueish color
 - > Acid dyes: include eosin, orange g, and acid fuchsin
 - Stain *positively charged structures* (*cationic*, *basic*, *acidophilic*) such as **proteins** with many ionized amino groups, **mitochondria**, secretory granules, collagen and cytoplasm with a **pinkish color**

• **Special stains:** Bind specifically to certain chemical groups and structures

- Trichrome stains: allow greater distinctions among various extracellular tissue components such as Masson trichrome
 - ✓ Stain the *connective tissue (blue)*, *cytoplasm (pink)*, *nuclei (dark brown)*
- PAS (periodic acid-Schiff) utilizes the hexose rings of polysaccharides and other carbohydrate-rich tissue structures and stains them distinctly purple or magenta
- Sudan black: lipid-soluble dyes satin lipids; avoiding the processing steps that remove lipids, such as treatment with heat and organic solvents


- > Van Gieson method: stain collagen (pink), muscle (yellow)
- Metal impregnation: less common methods, using solutions of silver salts to visual certain ECM fibers, specific cellular elements in nervous tissue
- Immunostaining: use antibodies that bind specific molecules inside the cell which include immunofluorescence and immunohistochemistry


Microscopes

- Microscopes are instruments that are used to observe small molecules
 - They differ in their quality according to their resolving power depending on the quality of the objective lens
 - **Resolving power:** The *smallest distance* between 2 structures to be seen as *separated* objects
 - > It determines the *quality*, clarity and richness of detail
 - ✓ As the microscope distinguish smaller particles, higher resolving power, higher quality
- Light Microscope: Uses *light* (such as visible or UV light)
 - Maximum resolution 0.2 μm (Objects smaller than 0.2 μm such as a single ribosome or cytoplasmic microfilament cannot be distinguished)
 - Has 2 main lens, ocular and objective lens, where its magnification power equals the <u>multiplication</u> of the 2-lens power (Permit magnification of 1000-1500 time)
- Types of light microscope:
 - Bright-field microscopy
 - ✓ Stained tissue is examined with *ordinary light* passing through the preparation
 - ✓ Includes an optical system and mechanisms to move and focus the specimen
 - ✓ The *condenser collects and focuses* a cone of light that illuminates the tissue slide on the stage
 - ✓ *Objective lenses enlarge and project* the illuminated image <u>x4, x10</u>
 - ✓ *Two eyepieces or oculars magnify* this image another $\underline{x10}$ and project it to the viewer, yielding a total magnification of x40, x100, or x400

Fluorescence microscopy

- ✓ Tissue sections are irradiated with *Ultraviolet (UV) light* and the emission is in the visible portion of the spectrum
- ✓ The fluorescent substances appear bright on a dark background
- ✓ It has a source of UV or other light and filters that select rays of different wavelengths emitted by the substances to be visualized
- ✓ It can use an *Immune-Fluorescent* staining which is <u>more specific</u> (using *antibodies*)
- Confocal microscopy
- > Polarizing microscopy

> Phase-contrast microscopy

- ✓ Study *unstained* cells and tissue sections (*colorless*; similar optical densities)
- ✓ Uses a lens system that produces visible images from *transparent objects* and can be used with *living, cultured cells*
- ✓ Is based on the principle that light *changes its speed* when passing through cellular and extracellular structures with different *refractive* indices (appear lighter or darker relation to each other)

• Electron Microscope: uses a beam of electrons

- > Images results from the refraction and absorption of the electron beam so appears *white & black*
- For the light microscope we put the sample on a *glass slide*, but for the electron microscope we put it on a *metal grid*
- Types of electron microscope:
 - > Transmission electron microscope (TEM)
 - Produces 2D images where the electrons penetrate the cell and can produce images for the internal structures and organelles

Scanning electron microscope (SEM)

Produces 3D images where the electrons can't penetrate the surface producing images for the cell surface

Past Papers

- 1. One of the following parts of bright-field microscope focuses light on the object to be studied:
 - A. Focusing-piece
 - B. Objective lens
 - C. Beamsplitter
 - D. Ocular lens
 - E. Condenser

2. You are a researcher in nanotechnology interested to understand the ultrastructural distribution of a potential biomaterial used for as an intracellular drug. The most microscope useful to you is

Answers 1. E 2. C

- A. Confocal microscope
- B. Fluorescent microscope using phalloidin
- C. TEM
- D. Polarizing microscope
- E. SEM

3. Which of the following is a term used to describe the shortest distance between two points that can still be distinguished as separate entities

- A. Contrast
- B. Resolution
- C. Magnification
- D. Wavelength
- E. Focus

4. The step of sample preparation that precedes the clearing step with an organic solvent is?

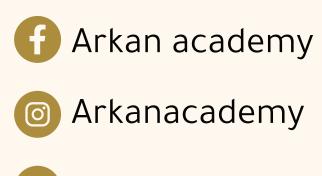
- A. Fixation
- **B**. Embedding
- C. Dehydration
- **D**. Staining
- E. Infiltration

5. Which of the following stains depends mainly on the cationic and anionic properties of the sample:

- A. PAS
- B. Immunohistochemistry
- C. Metal impregnation technique
- **D**. H & E
- 6. The resolution of the light microscope depends mainly on:
 - A. Ocular lens
 - B. Condenser
 - C. Objective lens
 - D. Specimen slide

7. What is the most commonly used chemical for removing water from biological samples (dehydration):

- A. Xyline
- B. Paraformaldehyde
- C. Alcohol
- D. We can air-dry samples instead
- E. None of the above
- 8. What is the most suitable microscope(s) to visualize the following: cultured cells, immunohistochemically stained sections, and H&E-stained sections, respectively:
 - A. Bright-field microscope for all of them
 - B. Bright-field microscope, phase-contrast microscope, and bright-field microscope
 - C. Phase-contrast microscope, bright-field microscope, and bright-field microscope
 - D. Bright-field microscope, immunofluorescence microscope, and TEM
 - E. Phase-contrast microscope, immunofluorescence microscope, and bright-field microscope


Answers 3. B 4. C 5. D 6. C 7. C 8. E 9. Your colleague is planning to found the abundance of myoepithelial cells in parotid glands by staining (as precise and easy as possible), what do you advise her/him to do:

- A. H&E stain
- B. TEM
- C. PAS stain
- D. Immunohistochemistry or immunofluorescence staining
- E. Any of the above

10. During the preparation of a routine H&E slide, what step occurs after the tissue is fixation?

- A. Clearing
- B. Embedding in paraffin
- C. Slicing
- **D**. Dehydration

Answers 9. D 10. D

 \bigcirc

www.arkan-academy.com

+962 790408805